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NOTICE

This report was prepared as an account of Government sponsored
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Space Administration (NASA), nor any person acting on behalf of
NASA:

A. Makes any warranty or representation, expressed or im-
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process disclosed in this report may not infringe privately

owned rights; or

Be Assumes any liabilities with respect to the use of, or for

damages resulting from the use of any information, appara-

tus. method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any em-

ployee or contractor of NASA. or employee of such contractor, to

the extent that such employee or contractor of NASA, or employee

of such contractor prepares, disseminates, or provides access to,

any information pursuant to his employment or contract with NASA,

or his employment with such contractor.
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National Aeronautics and Space Administration
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SINGLE-STAGE EXPERIMENTAL EVALUATION OF BOUNDARY LAYER

BLOWING TECHNIQUES FOR HIGH LIFT STATOR BLADES

I-- C OMPRESSOR DESIGN

by

M. L. Miller and D. C. Chapman

Allison Division, GM

SUMMARY

Three stator blade sets were designed for use in investigating the effec-

tiveness of boundary layer control by blowing as a means of reducing losses

and increasing stall-free range for highly loaded axial flow compressor

blading. The concepts studied may be applicable to either rotors or stators.

This study, however, was limited to stators to minimize mechanical prob-

lems. The source of blowing air was chosen as the region of high pressure

on the pressure surface of the blade near the leading edge. An inlet guide

vane and state-of-the-art flow generation rotor were designed to produce the

stator inlet flow. The stator hub inlet M:_ch number was 0.75, the stator hub

inlet flow angle was 54 degrees, and the stator hub-to-tip ratio was 0.70.

These values were considered to be representative of middle and latter

stages of highly loaded axial flow compressors.

The stator blade section selected was a 65-series thickness distribution

with a circular arc meanline shape. Available low speed cascade data was

extrapolated to determine blade camber and setting angles. The first stator

was designed for a hub blade element diffusion factor of 0.65 (38.8 degrees

of turning) and the second and third stators were designed for hub blade ele-

ment diffusion factors of 0.75 (54 degree s of turning). A single slot was

designed for the first and second stators and a double slot was designed for

the third stator.

Boundary layer analyses were made to predict boundary layer growth and

points of separation using pressure distributions that were obtained from ex-

trapolation of cascade data. Slots were designed to reenergize the boundary

layer air by blowing. Blowing air is inducted through a spanwise slot on the

pressure surface of the blade near the leading edge into the vane core and

is released through the slot or slots in the suction surface located appropri-

ately upstream of the predicted separation point. The slots are formed by a

simple planar cut of constant width with the minimum mechanically feasible

inclination to the local surface tangent.



INTRODUCTION

Advanced airbreathing propulsion systems require lightweight compact

compressors capable of high levels of performance. These compressors

should have a broad range of operation and a large stall margin. High re-

liability and relative insensitivity to inlet flow distortion are generally re-

quired of all compressors. In meeting the more demanding compressor de-

sign requirements, compromises must be made that are strongly dependent

on the particular application. New applications are steadily increasing the

range of requirements which the compressor must meet.

Compressor technology has been advanced continuously by extending,

among other parameters, the usable rotational speeds, increasing stage

loadings or diffusion factors, and reducing stage length through the use of

high blade aspect ratios. Whereas further advancements can be made

through optimizations and improved combinations of the aforementioned

parameters, severe aerodynamic limitations such as increasing losses

and decreased stall margin are being encountered. Significant advance-

ments in compressor technology require the application of advanced con-

cepts in terms of improved blading for high flow Mach numbers and applica-

tion of high lift devices to extend the stall-free flow range for compressor

rotors and stators. Advanced concepts in these areas may result in sizable

reductions in the number of compressor stages and improved compressors,

depending on the requirements of the application.

Limiting values of blade loading and angle of attack are associated with

steep blade surface pressure (or velocity) gradients and separation of the

suction surface boundary layer. Separation of the suction surface boundary

layer can be delayed by energizing it with high pressure air. In view of

these considerations, an experimental single-stage compressor rig was de-

signed and constructed to test highly loaded stators using internal blowing

concepts to reduce losses and improve stall-free flow margin.

The objectives of this program are to establish experimentally the

feasibility and extent of increasing blade loading and stall-free flow margin

by boundary layer blowing. A secondary objective is to obtain blade ele-

ment data for design use. Three slotted stator designs are to be made which

are representative of those for middle and latter stages of highly loaded

axial flow compressors. Stator inlet flow is to be generated by a state-of-

the-art flow generation rotor. This report presents the details of the aero-

dynamic and mechanical design of the facility and the three slotted stator

configurations.

A similar program using suction boundary layer control on highly loaded

stators will also be tested on this compressor rig. The design of these

stators is reported in Reference i.
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SYMBOLS

Meanline shape definition

Area, ft 2

Solidity exponent in deviation equation

Airfoil chord, in.

Correlation factor = 0.42, Equation (6), degrees

Specific heat of air at constant pressure, Btu/ibm-°R

Drag coefficient

Camber level, expressed in terms of isolated airfoil lift co-
efficient

Wake momentum difference coefficient

Equivalent diffusion ratio

Diffusion factor

Compressibility correction, degrees

Secondary flow correction, degrees

Gravitational constant, 32.2 ft-lbm/ibf-sec2

Height of blowing slot, in.

Enthalpy change across rotor, Btu/Ib m

Boundary layer form factor

Incidence angle based on mean camber line, degrees

Mechanical heat equivalent, 778 ft-lbf/Btu

Empirical constant, Equation (8) and slot total pressure loss

coefficient, Equation (15)

Deviation correction for blade other than 65-series

Deviation correction for blade thickness,other than 10%



L

Lax

m_=l

M

M

N

O

P

Pt

q

qn

R

Rc

S

S

t/c

t

T t

U

U

V

I

Effective length of blowing slot, in. I

Axial projected chord, in. I

Slope of deviation angle variation with inlet flow angle for unity solidity

Mass flow rate in blowing slot, lb m/sec I

Mach number I

Blowing parameter

Rotational speed, rpm I

Cascade throat dimension, in. I

Static pressure, psia I

Total pressure, psia

Dynamic pressure, psia I

Normal induced velocity component, ft/sec I

Radius, in.

Pressure ratio I

Gas constant, 53.3 lbf-ft/lbm-°R i

Airfoil surface pressure coefficient, (Pt2 - p)/q2, dimensionless, or

entropy, Btu/lbm-°R I

Blade spacing, in.

Thickness-to-chord ratio I

Static temperature, °R I

Total temperature, °R

Suction surface and jet velocity, ft/sec I

Wheel tangential velocity, ft/sec I

Air velocity, ft/sec

I
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W a

X

Greek

T

7 °

b °

(8°)io 0

0

g

P

O"

Subs cripts

A

BLC

Compressor airflow, lbm/sec

Distance along chord, in.

Angle of attack or streamline slope, degrees

Air angle, degrees

Air turning angle, degrees

Ratio of specific heats

Blade chord angle, degrees

Boundary layer thickness, ft, or ratio of total pressure to stan-

dard sea level pressure of 2116.2 psfa

Deviation angle, degrees

Deviation angle for 65-series airfoil with zero camber and 10%

t/c, degrees

Adiabatic efficiency

Momentum thickness, ft, or ratio total temperature to standard

sea level temperature of 518.6°R

Blade metal angle, degrees

Density, lb m/ft 3

Blade row solidity, c/s

Camber angle, degrees

Angle of inclination between center line of blowing slot and

tangent to suction surface, degrees

Loss coefficient

Annulus

Boundary layer control
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J

0

0
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R

S

SF

sep

sl

te

T

v

WBLC

z

8

0

1

Corrected or compressibility

Choking condition

Design

Stator equivalent inlet flow angle

Edge of boundary layer

Hub section

Incompressible or reference station

Property of jet flow

At slot location

Throat

Radial direction

Rotor

Stator

Secondary flow

Separation point

Streamlines

At trailing edge

Tip section

Constant axial velocity condition

Without boundary layer control

Axial direction

Tangential direction

Guide vane inlet

Rotor inlet or first blowing slot
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2 Rotor exit, stator inlet or second blowing slot

Stator exit

Superscripts

Relative value

Sonic conditions or minimum loss

OVERALL AERODYNAMIC DESIGN

The requirements of the contract were to produce stator flow conditions

and loading that would typically occur in the middle or latter stages of a

highly loaded compressor. Initially, a multistage compressor design

analysis was made to ensure that the stator design chosen was compatible

with requirements of a multistage machine. The test stage was then de-

signed with the stator blade row as the research blade. The inlet guide vane

and flow generation rotor were designed within current state of the art to

produce the desired flow into the stator. Stator loading can be increased by

decreasing the solidity, diffusion of axial velocity, or by increased turning.

The first two techniques, however, are not considered representative of good

design practice. Therefore, for this study, high stator loading was achieved

by means of high turning. To avoid excessive rotor loading or turning past

the axial direction by the stator, inlet guide vanes were used.

The initial step in the desig_ process was _,,e selection of the basic de-

sign variables. Next, loss correlations were established for the inlet guide

vane, rotor, and stator vane rows. Velocity diagrams were then calculated

by an iteration between velocity diagram values and blade losses. Finally,

the blade geometry in terms of blade camber and setting angle was determined.

SELECTION OF BASIC DESIGN PARAMETERS

Preliminary studies were conducted to determine design specifications

which would be representative of the middle or latter stages of advanced

compressors and to determine what form of velocity diagram would best

satisfy the design requirements. Multistage compressors with four tip

speeds were investigated in this study, each having an overall pressure

ratio of 9:1. Tip speeds were 950, 1050, 1150, and 1250 ft/sec and the com-

pressors considered for each tip speed were as follows:

• 5 stage,

• 6 stage,

• 8 stage,

1.55 average stage pressure ratio

1.442 average stage pressure ratio

1. 316 average stage pressure ratio (except at 950 ft/sec)



Compressor tip diameter was 30 inches. Velocity diagrams were com-
puted using f:ee vortex design and axial entry into each rotor. From these
analyses, the pertinent values of a middle stage were examined. Stages
selected for comparison were those with a stator inlet hub-to-tip radius
ratio of approximately 0.7.

Results of the study are shown in Figure 1, where both stator hub and
rotor tip diffusion factors are plotted against the pressure ratio of the stage
in question. Solidity values assumed were 1.0 at the rotor tip and 1.9 at the
stator hub. The heavy dashed line in Figure 1 is the locus of rotor tip dif-
fusion factors required to produce a stator hub diffusion factor of 0.75. The
values range from 0.7 at a tip speed of 950 ft/sec down to 0.59 at a tip
speed of 1250 ft/sec. Corresponding stator hub Mach numbers and turning
angles are shown in Figure 2.

On the basis of this analysis, the stator hub Mach number for this study
was chosen to be 0.75. Two stator hub diffusion factors were selected--
0.65 and 0.75. Tip diameter of the test compressor was chosen to be 30
inches and is constant across the inlet guide vane, rotor, and stator vane.
NACA 63-006 airfoil sections were used for the inlet guide vane and double
circular arc airfoil sections for the rotor. The 63-series sections were
selected because of the availability of blade element design data and the
double circular arc sections for the blades because of their better perfor-
mance in the transonic range.

Design of the high lift stators necessitated the use of available cascade
data. Therefore, the 65-series airfoil section was selected. The 65-series
section is compatible with the upper level of 0.75 inlet Mach number. To
define incidence and deviation angles quantitatively, the circular arc mean-
line was selected for designing the stator airfoil sections.

LOSS DETERMINATION PROCEDURES

Inlet Guide Vane Loss Correlation

The inlet guide vane is based on the basic NACA 63-006 airfoil because

of the availability of cascade data. Inlet guide vane losses were calculated

from the wake momentum difference coefficients (Cw1) of Reference 2. Wake

momentum thickness coefficient may be calculated from wake momentum

difference coefficient as follows:

(1)
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The total pressure loss coefficient, _, may then be calculated from the

wake momentum thickness coefficient by the relation:

(co 13 [ i0)]-- -- - (2)
,_=2 cos#i \ cos#I I 7_--iI _ Icos# i

where H I is the wake form factor for which a value of i. 08 was used.

Rotor Loss

The selected total loss coefficient distribution for the rotor is shown in

Figure 3. This distribution of loss is based on an existing compressor having

very similar design values of blade loading and tip speed. Total pressure

loss coefficients shown in Figure 3 are measured values of unpublished test

results.

Stator Loss Correlation

Stator losses at design conditions were derived from Lieblein's work on

equivalent diffusion ratio in Reference 3. The equivalent diffusion ratio at

minimum loss is calculated as follows:

cos _3 [ c°s2fl2 ]D* - 1.12 + 0.61 (tan f12 - tan f13) (3)
eq cos _2 cr

Assuming the rapid rise in momentum thickness coefficients for values

of _,eq greater than about i. 9 is caused principally by separation, it was
further assumed that with a practical method of boundary layer control

momentum thickness coefficients at a given D*q could be held to the lowest

measured values. In Figure 4, the upper curve represents the mean of the

data by which Lieblein correlated momentum thickness with Deq. The lower

curve is a line drawn through the lower edge of the data scatter; this line
,

is assumed to represent momentum thickness as a function of Deq with ef-

fective boundary layer control for a two-dimensional cascade. The corre-

sponding total pressure loss coefficient may then be calculated from Equa-

tion (2) (upon replacing Subscripts 0 and 1 by 2 and 3) in which H 3 is the
stator wake form factor for which a value of I. 08 was used. This loss coef-

ficient is considered representative of two-dimensional cascade losses with

boundary layer control. Losses for two-dimensional cascades and annular
cascades from Reference 4 for various locations are compared in Figure 5

as functions of diffusion factor. It is possible to obtain the ratio of annular

to two-dimensional losses for a given radial position by entering the curves

in Figure 5 at the diffusion factor of the cascade with boundary layer control.
The two-dimensional loss coefficient obtained from Equation (2) is multiplied

by the foregoing ratio to obtain the final profile loss coefficient representative

of the annular cascade with boundary layer control.



VELOCITY DIAGRAM CALCULATIONS

Velocity diagrams were calculated by an axisymmetric compressor
analysis which accounts for curvature and entropy gradient terms in the
radial equilibrium solution. The calculation procedure is described in the
Appendix.

The design velocity diagram calculations were accomplished assuming

no end-wall bleed. The decision to ignore end-wall bleed in the design was

based on the possibility that wall bleed may not be required during test. The

effect of wall bleed on diffusion through the stators was examined and was

found to give only a 2 to 3% increase in stator diffusion factors for wall

bleed rates to 3% of compressor inlet flow on each wall. Boundary layer

blockage factors used were 0. 995 at inlet to the inlet guide vanes, 0. 985 at

rotor inlet, 0. 975 at stator inlet, and 0. 965 at stator exit. All blockage

was assumed to be at the hub. The rotor is designed for nearly constant

total pressure rise radially. The radial variation of rotor energy addition

is shown in Figure 6.

Design velocity diagrams for guide vane, rotor, and stators are shown

in Figures 7, 8, and 9. The rotor tip speed is 1095 ft/sec and the tip dif-

fusion factor is 0. 414, based on the tip solidity value of 1.35. Diffusion

factors at the other rotor stations are also near 0.4 and are, therefore,

well within state of the art to ensure good rotor operation. The resultant

inlet guide vane and stator radial loss distributions are shown in Figures

10a and 11, respectively.

The flow path is shown in Figure 12. Rotor inlet hub-tip radius ratio

is 0.68 compared to the 0.7 value at stator inlet. With the blade aspect

ratio of 1.66, the hub ramp angle is low and curvature effects are small.

Final design values for the flow generation rotor are:

Wa_/6 = 88.2 lb/sec

Rc(rotor) = 1.37

= 88.8%

N/# = 8367 rpm

The stage design values for the 0.75 Df stator are estimated at R c =

1.35 and _= 85.5%. For the 0.65 Df statnr, the design values are R c =

1. 355 and '7 = 86.4%.
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INLET GUIDE VANE DESIGN

The NACA 63-006 airfoil was selected because of the availability of

cascade data. The guide vane design is based on free vortex tangential

velocity distribution in the direction of rotor rotation and corrections are

included for compressibilit._y_ and secondary flow effects. Design point for

the inlet guide vane is Wa_/$ = 88.2 ib/sec at an inlet Mach number of 0. 389

and mean radius design turning of 23.86 degrees.

Compressibility effects were established for each blade element using

the method of Reference 5. The correction for compressibility, which is

applied to the design flow turning angle (_i), is given by:

EC - /31C - _1 (4)

where :

= tan B 1 (5)
tan fllc \ Vzo / tan _ lv

Equation (5) describes the relation between an incompressible and com-

pressible flow condition across the blade element and is shown schematically

in Figure 13. If no other flow effects were to be considered, the guide vane

design camber would be based on the turning given by _1C - _0"

L_£_ueSecondary flow effects were established for each .... _ element using
the method of Reference 6. The correction for secondary flow which is ap-

plied to the design flow turning angle is given by:

ESF -_IsF - _1 = C tan -I (qn/V1) (6)

A correlation factor "C" of 0.42 was used which was the empirically de-

veloped value of Reference 6. Boundary layer thicknesses at the guide vane

inlet are required to evaluate the normal induced velocity component. These

were determined using a turbulent boundary layer growth calculation based

on the method of Culick and Hill in Reference 7. An 8-foot long section was

assumed between the bellmouth and the compressor inlet tip section and a

conventional bullet nose upstream of the hub section.

Once the compressibility and secondary flow corrections are determined,

the guide vane camber is determined based on the corrected design flow turn-

ing angle for the blade element, given by:

ii



(At)C = (ill - fl0) + EC + ESF (7)

Blade camber and angle of attack can then be obtained from Reference 2

for the corrected design flow turning and solidifies.

A summary of aerodynamic and airfoil geometry data is given in Table

la for the inlet guide vane. Thirty-four vanes are required.

ROTOR BLADE DESIGN

Double circular arc blade sections were chosen for the rotor blades.

The design values of inlet Math number range up to 0.95 and double circular

arc profiles are preferred to 65-series profiles at that Mach number- level.

The sections were designed on a plane normal to the stacking axis, which

for this blade is a radial line which passes through the center of gravity
of each blade section.

The blade chord was chosen to produce a smooth flow path as well as a

conservative rotor aspect ratio. The blade chord is 2. 875 inches and is

constant from hub to tip. Rotor aspect ratio based on inlet blade height
is i. 66.

Rotor solidity was chosen to be the maximum value attainable com-

mensurate with minimum blade thickness which fulfilled mechanical re-

quirements and provided sufficient flow margin at all radial stations.

Solidity and thickness-to-chord values respectively range from 1.37 and

0. 032 at the tip to 1.97 and 0. 078 at the hub with calculated choke flow

margins of 6.2% at the tip and 12.0% at the hub section. Forty-five blades

are required.

Incidence angles for all radial stations of the rotor blade were chosen

to be zero degrees with the mean camber line. The choice of this inci-

dence level and the constant value hub to tip was based on Allison ex-

perience on similar designs.

Deviation angle was estimated by a modified Carter's rule:

0.25_
8 * = _+ K (t/c) (8)

Deviation ranged from 4.6 degrees at the tip to 7.8 degrees at the hub
section. Resultant camber and setting angles are listed in Table II.

STATOR BLADE DESIGN

The stator loading levels imposed by the design velocity triangles are

expected to result in separated flow at some, if not all, radial stations of
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conventional stators. The objective of this program is to design stators with

boundary layer control devices of the internal blowing type which will achieve

the desired levels of turning without the high losses associated with sepa-

rated flow. The pressure distribution around the airfoil surfaces must be

established to design the boundary layer control slots. In addition, the de-

sign incidence angle and deviation angle must be established to define the
airfoil.

A review of available procedures led to the conclusion that the most

expedient means of determining the aforementioned required data was to

extrapolate existing low speed cascade data. The most extensive cascade

data available was for the NACA 65-series airfoils. The Mach number level

of the stators was compatible with this airfoil; therefore, this airfoil was

chosen for the stators. The cascade data were obtained for airfoils with

a = i meanlines. Circular arc meanlines have been chosen for this application

because of the easier identification of incidence and deviation angles in the

test program. Inaccuracies attributable to the differences in the two mean-

lines were considered to be less significant than those introduced by the

extrapolations of the cascade data. The cascade data, on which these stator

designs were based, were taken from Reference 8.

Deviation Angle or Flow Turning

The analysis of deviation angle or flow turning angle with boundary layer

control began with cross plots of flow turning angle versus liftcoefficient

from the cascade data of Reference 8. These plots are shown in Figures

14, 15, and 16. Also shown on these plots are the ideal flow turning line

(zero deviation angle), the flow turning resulting from the deviation angle

predicted by the NACA deviation angle rule, and the first approximation for

flow turning with boundary layer control. Deviation angle as computed by the

NACA rule is given by:

o mu=l¢ d 8 °

= (KS)sh (Ks) t (8°o)10 +-- +--(i - i*)' r b: di
(9)

The third term on the right hand side of Equation (9) was neglected,

since its effect is negligible for solidities much above 1.2.

Flow turning angle, A_, is then defined by:

¢ _S°= +i (10)

Examination of Figures 14, 15, and 16 indicates that the flow turning

predicted through application of the NACA deviation angle rule at 0 ° inci-

dence fits the cascade data very well in the normal ranges of camber and

solidity but that the actual deviation is greater when the curves are extra-

polated to the higher camber angles.

13



The first approximation for flow turning angle with boundary layer con-
trol was based on the assumption that the deviation angle that would be ob-
tained without boundary layer control would be reduced by 50% by the appli-
cation of boundary layer control. That is:

8° BLC : (1/2) 8° WBLC (11)

whe re :

8° BLC = deviation angle with BLC

8°
WBLC = deviation angle without BLC at zero incidence (cascade

data value)

Comparing the first approximation line with the NACA deviation angle

rule line in Figures 14, 15, and 16 indicates that at a turning angle of about

50 degrees (representative of the turning of the 0.75 Df stator), the differ-

ences between the two lines are comparatively small. At a turning of about

30 degrees (representative of the turning of 0.65 Df stator), the flow turning
degradation due to gross flow separation is not large as indicated by the

agreement between the NACA deviation angle rule and the cascade data.

The NACA deviation angle rule, therefore, was selected as the means of

estimating flow turning with boundary layer control.

A typical example of the estimated improvement in stator flow turning

due to maintaining an attached boundary layer by BLC is shown in Figure 17.

The flow turning values for no BLC were taken from the extrapolated data of

Figure 16. The curves indicate that, for the given conditions, it is antici-

pated that the flow turning could be improved from 40 to slightly over 60 de-

grees by the application of BLC. Also shown in Figure 17 is the estimated
reduction in stator loss due to BLC. The minimum loss values were ob-

tained from the 8/c versus Deq curves of Figure 4 and corrected for three-
dimensional flow effects usingfhe data of Figure 5 as outlined in the stator

loss analysis procedure. The shape of the loss curve for no BLC was de=

termined from the extrapolated cascade drag coefficient data shown in

Figure 18 as taken from Reference 8. This curve, along with the assump-

tion that minimum loss will occur at zero incidence and the flow turning

curve, established the loss bucket estimation for the stator airfoil section

with BLC.

Design Incidence Angle

Initial stator vane designs using the selected deviation angle rule and

the assumption of zero design incidence angle indicated that leading edge

region velocity peaks were possible at zero incidence angle for blades having

larger camber. For this discussion, leading edge region is defined as 0 to

5% chord. Estimated pressure distributions obtained as described in this

report in the Pressure Distribution section indicated that boundary layer
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separation could occur well before 50% chord. This type of velocity dis-

tribution is not expected to respond well to a blowing boundary layer con-

trol device which is primarily intended to delay separation and reduce

losses near design incidence. To counteract separation on the forward part

of the blade, the blowing slot location may be required to be upstream of or

at the throat, which is aerodynamically not desirable.

To obtain a satisfactory estimate for design incidence angle, the cas-

cade data of Reference 8 was analyzed to obtain the incidence angle for the

onset of leading edge velocity peak and stalling incidence, defined as twice

the minimum drag, as shown in Figures 19, 20, and 21. It will be appreci-

ated that the cascade data is subject to a certain amount of interpretation,

particularly in the choice of angle for onset of leading edge velocity peak.

Insofar as possible, this was chosen to be the angle at which the leading

edge region (0 to 5% chord) pressure coefficient had just become the highest

value recorded on the blade surface. For highly cambered blades, the rise

of leading edge pressure coefficient appears to occur very rapidly for small

increases in incidence angle thereafter. Consequently, the angles given in

Figures 19, 20, and 21 do not represent the maximum values of incidence

for prospectively effective boundary layer control use but incidences which
are close to the maximum.

Interpolating between the data of Figures 19, 20, and 21 for the 0.75

diffusion factor vane hub, an estimated incidence versus camber for the

onset of leading edge velocity peak can be obtained. The results are shown

in _,,_',_8_.__ -_2 by the. solid curve for the stator hub inlet flow angle of 53.9

degrees and solidity of i. 7. To estimate the required incidence and camber

for the 53.9-degree flow turning at the stator hub, the NACA deviation angle

rule is used for calculating deviation with boundary layer control. Combining

Equations (9) and (i0) and neglecting the d _°/di term yields:

_b = fi2 -fi3 - i * ($o)10 1 _b (12)

Since comparisons between the first approximation and NACA deviation

angle rule, as shown in Figure 14, 15, and 16, were not made at incidences

other than zero degrees, two methods of application were tried. This ap-

proach was selected in place of making comparisons at other incidence

values since the accuracy of the extrapolation to cambers on the order of 80

degrees is marginal.

Method 1 was defined consistent with a zero-degree incidence condition,
o

wherein m_.=l, b, and ($o)10 were varied by adjusting the inlet flow value
by the incidence change. For example f12 = 53.9 ° at i = 0 ° and t92E = 57.9 °
at i = -4% Results of this calculation are shown in Table IIIa and plotted

as the broken curve in Figure 22. The intersection of the solid and broken

15



curves gives the required blade camber which for the 0.75 Df stator hub
gives an incidence of -3 degrees with a value of CLo = 2.86 and an equiva-

lent circular arc camber of 72 degrees.

Method 2 is the defined approach of the NACA deviation angle rule in
o

Reference 4. That is, the values of ma.=l, b, and (_o}10 remain fixed at

_2 = 53.9 °. Results of this calculation are shown in Table IIIb and plotted as

the dashed curve in Figure 22. The intersection of the solid and dashed

curves gives the required blade camber which for the 0.75 Df stator hub

gives an incidence of -1.8 degrees with a value of CLo of 2.75 and an equiv-

alent circular arc camber of 69.2 degrees.

Considering that much interpretation, interpolation, and extrapolation

was required at these high cambers to obtain the solid curve in Figure 22,

the difference of 1.2 degrees in incidence and 2.8 degrees in camber is

considered well within the accuracy of the calculations. The value from

Method 1 was selected, however, since it resulted in greater deviations or

higher camber which places the design values on the conservative side.

The initialblade design for this stator hub indicated choking incidence

at -6 degrees at a CLo = 2.74. Calculations show that the choke incidence

angle of highly cambered blades discussed herein will not change signifi-

cantly with a moderate change in camber. Therefore, it is assumed that

this stator will choke at an incidence angle of approximately -6 degrees.

Based on experience with previous stage designs of this type, it is con-

sidered that the incidence angle operating range between choke and onset of

leading edge velocity peak should be approximately 6 degrees. Figures 20

and 21 indicate an available range of 1 to 2.3 degrees between stall and on-

set of leading edge velocity peak at a liftcoefficient of 2.88 and solidity of

1.5. The increased solidity of the stator hub section would be expected to

increase that range somewhat. A value of 3 degrees seems reasonable for

the incidence angle range between stator stall and onset of leading edge

velocity peak for the hub section of the 0.75 Df stator. Therefore, the de-

sign incidence for the 0.75 Df stator of -3 degrees was confirmed as a
reasonable choice.

Identical interpolation procedures using Method 1 for deviation angle

determination were followed for the 0.65 Df hub section to estimate design

incidence angle. The results obtained indicated that design incidence re-

quired would be about 7 to 10 degrees. These results were considered un-

realistic and due in part to the fact that velocity decelerations across the

vane row in the stationary cascade were not typical for the high inlet flow

angle. That is, the stator row blade sections are not required to turn the

flow back to the axial direction for this diffusion factor. Therefore, it was

decided to select the 3-degree incidence angle change for operating range

away from the choke incidence condition. Since initial choke incidence
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angles were determined to be zero degrees for the 0.65 Df hub stator section,
the design incidence angle was selected as +3 degrees.

Allison design experience indicates and supports a constant design in-

cidence angle selection spanwise on the stator vanes as on the rotor blades.

The resultant stator airfoil design sections are summarized in Table IV. A

constant thickness of 10% was selected for all sections since it gave minimum

thickness with sufficient core area for boundary layer control mass transfer

flow rate requirements at a 3-inch chord with a hub solidity of 1. 705. Thirty-

eight stator vanes are required.

As stated previously, deviation angle determination by Method 1 resulted

in higher camber of the stator vane relative to Method 2. For comparison

purposes, the stator outlet flow angles determined by Method 2 using the

inlet flow conditions and airfoil section properties from Table IV are given

in Table V. Calculated results show a higher turning of 3.6 to 4.3 degrees

for the 0.75 hub Df stator and 1.0 to 1.7 degrees for the 0.65 hub Df stator

by Method 2.

FLOW RANGE ANALYSIS

Fulfillment of the test requirements of this task necessitates testing

the stators over their stall-free operating range (i.e., from stator choke

to stator stall). Therefore, it was necessary to determine if the flow gen-

eration rotor was capable of providing stable flow to the stators over this

full range.

Estimated rotor performance with the inlet guide vanes is shown in

Figure 23. Data for the estimated efficiencies were obtained from unpub-

lished test data. The limits of each speed line in Figure 23 are taken as

the stall and choke points of the rotor at that speed.

The inlet angle at which the stator chokes was calculated using the

following formula:

B2c h = cos -1 0.95 (A/A*) (O/s) (13)

The product of A/A* and O/s represents the ratio of the ideal ap-

proach width-to-vane spacing for choking conditions. An empirical factor

of 0.95 accounts for real flow effects. Choke incidence angle was then

computed from:

ich = fl2ch- _2

Choke incidence values were computed at hub, mean,

stators. The results are summarized in Table IV.

(14)

and tip for both
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An extrapolation of cascade data from Reference 8 was also used to
determine the stall margin of both stators. Plots of air turning angle as
a function of incidence angle were made for cascades representative of the
stator sections. This data determined the shape of a curve drawn through
the design incidence and design air turning angle coordinates for the stator
section in question. Curves of this nature are demonstrated in Figures 24
and 25. The hub section of each stator was assumed to control the stall
limit. In Figure 24, the maximum air turning angle for the 0.65 Df stator
is seen to occur at an incidence angle of 8 degrees and the angle range be-
tween the design point and stall is shown to be approximately 5 degrees.
The choke ends of the curves deviate from the cascade data to reflect the
choking characteristics of the stator as calculated from Equations (13) and
(14). Figure 25 illustrates the results of this technique for the 0.75 Df
stator. There is no clearly defined maximum turning angle from this data
extrapolation. Therefore, stall is assumed to occur when the loss is equal
to twice the minimum loss. The stall incidence values are summarized in
Table IV.

To relate the rotor limits to stall and choke limits of the stator, a
simplified analysis based on mean radius characteristics was employed.
It was assumed for this analysis that the deviation angles for the inlet guide
vanes and rotor were constant over the range of speeds and flows.

Rotor inlet axial velocity was assumed constant radially at values cal-
culated from the rotor inlet area, inlet guide vane exit conditions, and the
weight flows from Figure 23. The combination of axial velocity, rotor
blade speed, and guide vane exit conditions specified the rotor relative in-
let conditions. These were calculated for tip, mean, and hub stations.
Energy input in the rotor was assumed constant radially at the value cal-
culated for the mean-radius station. Rotor exit conditions were calculated
using the rotor exit area, blade speed, and efficiencies from Figure 23 and
assuming axial velocity constant radially. From this information, stator
inlet air angles and Mach numbers were calculated for the tip, mean, and hub
stations. This gave sufficient information to relate stall and choke charac-
teristics of the stator to the stall and choke limits of the rotor.

The indicated stator angle variation for changes in rotor flow from de-

sign incidence to the point of rotor stall are shown in Figure 26. The flow

generation rotor flow angle range capabilities shown on Figure 26a and b are

greater than the stator stall incidence angle range for the 0.65 or 0.75 Df

stator as indicated in Figures 24 and 25. Therefore, rotor stall should not

restrict attainment of stator stall.

At the choke end of the characteristic, it is found that insufficient flow

generation rotor flow angle range capability is predicted at low speeds.
That is, the rotor will possibly choke before either the 0.65 or 0.75 Df

stator chokes as shown in Figure 27.
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Rotor choke may not prevent attainment of choke angles of incidence for

the stator. However, rotor choking may result in severe radial shifts of

flow which would affect the stator operating conditions adversely. Another

significant factor is that the test facility discharges to the atmosphere and

choke of the stator and/or rotor may be restricted by the rotor pressure

ratio necessary to pass the flow through the system.

On the basis of this study, it was decided that two sets of inlet guide

vanes may be required to ensure complete coverage of the stator flow range

at low speeds. The design inlet guide vane (initial set) will be used to ob-

tain the major portion of the data and the off-design inlet guide vane (second

set) will fill in the near choke region at low speeds if required.

OFF-DESIGN INLET GUIDE VANE DESIGN

A study was conducted to determine the inlet guide vane turning require-

ments which would provide sufficient flow range margin for the flow gen-

eration rotor near choke at low speed. An inlet vane which loaded the rotor

was required and several iterations on inlet guide vane flow turning levels

indicated that a meanline flow turning of 8.86 degrees is satisfactory.

Estimated rotor performance with the off-design inlet guide vanes is shown

in Figure 28.

The design point for these inlet vanes was selected at a W a _ 8 = 84.5

lb/sec (an inlet Math number of 0.37) and 80% corrected speed which pro-

vided rotor design incidence angle at the meanline station. The guide vane
outlet whirl distribution is free vortex and the design method used for de-

termining the vane NACA 63-006 airfoil sections was identical with the
method described in the Inlet Guide Vane Design subsection. Airfoil prop-

erties for the off-design inlet guide vanes are summarized in Table Ib and

the loss coefficient distribution is shown in Figure 10b.

Range of the flow generation rotor with the off-design inlet guide vanes

for near choke conditions at low speed relative to stator requirements are

more than necessary for both stators. Flow range results are shown in

Figure 29 for the 0.75 Df stator. The 0.65 Df stator results are not shown

since Table IV shows that its flow range from design incidence to choke in-

cidence is less than for the 0.75 Df stator. Although the stall flow range

margin is reduced relative to the design inlet guide vane case, as shown in

Figure 30, the indicated margin is sufficient for stall of both stators with the

off-design inlet guide vanes.
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BOUNDARY LAYER CONTROL DESIGN

In recent years, experimental and analytical work has shed some light

on the problem of control of boundary layers by tangential slot blowing to

prevent flow separation in an adverse pressure gradient. While the re-

ported work has dealt with restricted portions of this complex problem, it

has been possible to formulate an assessment of airfoil boundary layer con-

trol requirements using selected published results.

PRESSURE DISTRIBUTION

Location of boundary layer separation and subsequent location and sizing

of the blowing slot require computation of suction surface boundary layer

properties, and this in turn depends directly on the static pressure distribu-

tion.

Pressure distributions around the stator vane airfoil surfaces were ob-

tained by interpolating and extrapolating available low speed cascade data

from Reference 8. For given chordal locations, plots of pressure coeffi-

cient, S, as a function of liftcoefficient with lines of constant angle of at-

tack were prepared as demonstrated in Figure 31. Such plots were drawn

to define the pressure coefficients at leading edge, trailing edge, and at

several intermediate stations on both suction and pressure surfaces. In ad-

dition, the peak pressure coefficient on each surface was defined as well as

the location of the peak in terms of percent chord. The plots, described pre-

viously, were completed for several combinations of inlet air angle and

solidity to be able to interpolate to the proper inlet air angle values and to

interpolate and extrapolate to the proper levels of solidity. Linear interpola-

tion and extrapolation were used for both inlet air angle and solidity. The

final pressure distributions for the 0.75 and 0.65 Df stators are shown in

Figures 32 and 33, respectively.

BOUNDARY LAYER GROWTH AND SEPARATION

The location of the blowing slot along the chord of the vane is chosen in

relation to the estimated point of boundary layer separation on the suction

surface. The quantity of blowing air required to reenergize the suction sur-

face boundary layer is also related to the properties of that boundary layer

at the blowing slot. Hence, computation of the suction surface boundary

layer is essential to the determination of design values for blowing control

of separation.

Computation of the compressible turbulent boundary layer was made

using an analysis based on Truckenbrodt's energy integral method. This

analysis computes the boundary layer history for two-dimensional flow,

either axisymmetric or planar. Analysis of the boundary layer is based on
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an application of the turbulent analog of the Stewartson-Illingworth trans-

formation, as set forth by Culick and Hill in Reference 7.

The boundary layer history for the selected 0.75 and 0.65 stator hub

diffusion factor stator vanes was computed based on the static pressure

distributions shown in Figures 32 and 33. It was considered sufficiently ac-

curate to assume that free,stream total pressure was constant along the

surface and equal to the stator inlet value. It also was necessary to as-

sume that the estimated static pressure distributions remain unchanged

even though they reflect a separated boundary layer condition which must

change throughout the passage if reenergization by blowing reattaches the

boundary layer.

A summary of the computed boundary layer incompressible form factor,

H i , is shown in Figures 34 and 35 for the 0.75 and 0.65 Df stator vane suc-
tion surface at hub, mean, and tip streamline sections. The value of in-

compressible form factor for boundary layers at the separation point was

established through a series of calculated boundary layer histories for cas-

cade data given in Reference 8. This study indicated a value of H i = 2.2 at

the separation point as compared to the usually accepted value of 1.8. This

difference in separation point value of form factor may be due to the fact that

the boundary layer theory employed herein has neglected vorticity transport

effects which are considered to be significant in the cascade flow passage.

For this calculational scheme, the separation value of incompressible form

factor was taken as 2.2.

SLOT DESIGN

Total pressure in the blade core is governed by the performance of the

inlet and blowing slots. Blowing slots were sized according to boundary

layer control requirements in each case.

Total pressure loss in the actual core plenum is negligible for the blow-

ing flows encountered. The total pressure at the inlet of the inlet slot was

taken to be equal to the average static pressure over the portion of the pres-

sure surface where the inlet slot is cut; this severe assumption of complete

loss of stream dynamic head at the inlet slot was made in the absence of any

way to evaluate the actual situation and to provide a margin of safety for the

success of the slot design.

Drop in total pressure through inlet and blowing slots was evaluated using

Reference 9, where data are presented for incompressible flow. The total

pressure drop in Reference 9 is specified in the form

AP t = K X qi
(15)
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where information leading to a value of total pressure loss coefficient, K,

is plotted. The dynamic pressure, qi, is based on the density and velocity

of the flow in the slot. For all slots, frictional total pressure drop was
neglected in comparison with losses due to sudden contraction and flow

turning.

Blowing flow rate is dictated by the requirements of the suction surface

boundary layer and by the available static pressure ratio across the blowing

slot. The drop in total pressure across the inlet slot is computed on the

basis of an inlet flow rate equal to the blowing flow rate required. Thus,

the procedure is iterative, since the required blowing flow rate depends

on the inlet slot total pressure loss.

Figure 36 shows inlet slot performance as a function of Mach number

of the flow in the slot. For these calculations, the pressure loss coefficient

for a sudden contraction followed by a constant area turn from Reference 9

resulted in Kinle t = 0.48. Slot inlet total conditions are Ptinlet = 17.65 psia

as compared with a free stream stator inlet of Pt2 = 20 psia. Total tem-

perature at slot inlet and stator inlet is 572°R. The slot height was set at

0. 125 inches for all stators to maintain low total pressure loss and ensure

that sufficient flow would be transferred to the blowing slot during test.

Since this slot height selection resulted in low slot Mach numbers, about 0.1,

where free stream Mach numbers are less than 0.42 based on (P/Pt2) =
17.65/20 = 0. 883; this flow is essentially incompressible and data of Refer-

ence 9 directly applicable. In addition, it was possible to use Figure 36 for

all inlet slot computations since the entrance Pt and T t are essentially equal

for both sets of stators and are constant spanwise.

The design of the blowing slots for this application is based mainly on

the results of investigations in References 10 and 11. Peake's experimental

investigation showed in Reference 10 that it is possible to prevent separation

of a turbulent boundary layer in supersonic flow where a large pressure

rise is present. Peake's results also show that boundary layer reener-

gization by the jet is most effective when the injection slot is located approx-

imately six boundary layer thicknesses upstream of the location of the pres-

sure rise or point of shock interaction. Locating the slot farther down-

stream involves the risk of insufficient mixing of the high energy jet with

the momentum deficient boundary layer resulting in boundary layer separa-

tion above the jet. Locating the slot upstream of the optimum can result in

sufficient depletion of jet total pressure such that the new wall boundary

layer is in danger of separating due to the static pressure rise. The value

of six boundary thicknesses upstream of the computed point of separation

for slot location is used herein.

An analytical and experimental study of boundary layer control by a

wall jet for incompressible flow is reported by McGahan in Reference 11.
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McGahan found that the condition of the initial boundary layer ahead of the

injection slot has a significant effect on the results of tangential slot injection

in an adverse pressure gradient. The reported incompressible results

show that the ratio of the momentum added to the layer by the jet flow to the

momentum defect of the initial boundary layer immediately upstream of the

blowing slot location may be used to correlate the ratio of free-stream

velocity at the separation point to that at the slot location. That is:

2
• hi

(Uei)sep uJi
= f (M) where M --- (16)

Ue° i U2oi 8o i

Employing McGahan's data for the slot height and slot locations most

representative of the values expected in the compressor blade applications

of blowing boundary layer control resulted in a straight line correlation of

the data in the form:

(Ue i)
sep

Ueoi

- f (M) = a I M+ b I (17)

For convenience of use, this was changed to another formmunder the

assumption of incompressible flow and constant free-stream total pressure

between the slot location and the location of separation downstream of the

blowing slot. The relationships employed in rearranging the correlated data

are:

Psep- Po

qeo i

=i.0-

2

= 1.0 - f (M) 2 (18)

= fl (M)

In general, the center line of the slot will be inclined at angle %bto the

tangent to the blade surface at the slot location. Inasmuch as the tangential

jet boundary layer control will thus be accomplished by a tangential compo-

nent of the jet velocity, M has been arbitrarily redefined as

_u____o_,_h_1k, [ U2eoi 0oi (19)
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and is used in this form in the application of the correlated results to the de-
sign problem of blowing boundary layer control. It is assumed that the angle
_, is kept small enough to avoid detrimental effects caused by the normal
component of the jet flow and that curvature of the blade surface is insuffi-
cient to affect the application of these results. The resulting correlation
curve, along with the corresponding mapped data points, is shown in Figure
37. Note that in Figure 37, the parameter ,44appears in the redefined form

adopted for application of this data to blowing slots in compressor blade

surfaces.

In the application of these results to the control of the boundary layer

formed in the compressible flow around a compressor blade, it is necessary

to transform that flow into an equivalent incompressible flow and to sub-

sequently transform design results back to their compressible counterparts.

The transformation method applied was that reported by Culick and Hill in

Reference 7. In this transformation the pressure values correspond di-

rectly; total temperature is equal to the compressible free stream value; and

incompressible flow density is evaluated at Pt2 and Tt2. The values of

length and velocity are functionally related and the transformed values are

unique.

flow

uji

where

I
I

I

I
I

I

I
I

I
Relationships describing properties of the equivalent incompressible

and thus permitting calculation of the blowing slot height are:

0i= [te/Tt]3 0 (20)

hi= [te/Tt]3 h (21) I

Uei = [2g (Pt2- p)/Pi] I/2 (22) I

I
I
I
I

I

AP t = Kblowing X qJi (24)

The incompressible pressure loss coefficient for the blowing slot ob-

tained from Reference 9 for a sudden contraction followed by a varying area

turn resulted in Kblowing = 0.54.

For the single blowing slot designs, the slot location has been deter-

mined through the computed boundary layer values and the criterion of lo-

cating the blowing slot six boundary layer thicknesses upstream of the sepa-

ration point. The slot is then sized through McGahan's blowing parameter
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to maintain attached boundary layer flow just to the trailing edge. Thus,

the static pressure rise occurring along the suction surface between the slot

location and the trailing edge is required. Renoting that pressure values

correspond directly in the compressible-incompressible transformation,

the left hand side of Equation (18) can be determined from

Pte- Po qeo
- (S o - Ste)

qeo i qeo i
(25)

where S is the compressible pressure coefficient. The value of M is then

read directly from Figure 37.

Incompressible slot height is determined from Equation (19) which upon

rearrangement gives

2
MUeoi @oi

hi = (26)

u_i cos2

The stator slot height is then obtained using Equation (21) which is re-

written as

where tj is the static temperature of the compressible jet. Since the blowing

flow rate and total conditions of this flow are known, an iteration on h and tj
is performed through Equation (27).

The following material delineates and tabulates the results of the final

location and height of the single slot for appropriate blowing on the suction

surfaces of the 0.75 and 0.65 Df stator vanes of chord length of three inches.

Figure 38 shows the essential features of the single-slot vane, including the

location of an inlet slot supplying air to the blade core. The stator inlet con-

ditions, corresponding to the rig design point operation are Pt2 = 20 psia and

Tt 2 = 572°R. Boundary layer and free-stream properties at the slot locations

for 10, 50, and 90% span stations from the tip are shown in Table VI.

All slot sizing calculations were based on slot location at constant per-

cent chord along the whole blade span. Slot sizing was based on the blow-

ing parameter required to move the separation point to the trailing edge of

the airfoil at hub, mean, and tip sections. From Table VII, it may be

seen that under the conditions considered, the tip sections of these blades

exhibit the largest value of static pressure rise, and for this reason the slot
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was located at the calculated blowing location corresponding to the tip sec-
tion. For the Df = 0.75 blade, this location involves a compromise at the
hub section, where this slot location is only 4.5 boundary layer thicknesses
upstream of calculated separation (Table VI). However, the tip se_:tion of
each case required the largest blowing slot height and this height was taken
as the design height along the whole blade span. Hence, the blowing momen-
tum flux at the hub is greater than required and the mentioned compromise
is in a direction to compensate for the reduced mixing length.

The ratio of static-to-total pressure at the blowing slot outlet was then

used in evaluating pj and uj for the purpose of computing blowing flow rate.
Portions of the blade span assigned to the hub, mean, and tip sections of the

blade are shown in Figure 39. These span increments are used directly in

the computation of blowing flow rate. Tabulations of the final calculations

of slot height and blowing flow are shown in Tables VIII and IX.

A double blowing slot configuration on the 0.75 Df stator was also se-

lected (see Figure 38) in an attempt to obtain greater operating range capa-

bility. Location of the first slot was selected to be identical with the location

of the single-slot design. Examination of the blowing parameter ,4¢reveals

an extra complication in applying the results of Figure 37 to boundary layer

control where two slots are used in tandem. Since the blowing parameter,

,W',involves the boundary layer momentum defect thickness, 8 , six boundary

layer thicknesses upstream of the separation point, determining the slot

height of a second control slot along a surface requires knowledge of the

buildup of 8 downstream of the first slot. Lack of sufficient knowledge of

the velocity profile of the blown layer in an adverse pressure gradient

makes it necessary to employ an engineering approximation. Hence, several

of McGahan's experimental velocity profiles, measured at successive sta-

tions downstream of the blowing slot, were integrated to find 0 as a function

of position. These results were expressed, as shown in Figure 40, for several

values of the parameter M. With this approximation, the second slot

boundary layer values can be established once the first slot is located and

sized.

The initial design objective was to design the double slot configuvotion in

such a way that the second slot would support one half of (Pte - Po )/qe°ic°r-

responding to the location of the first slot. The second slot was then located

six boundary layer thicknesses upstream of the chordal position correspond-

ing to half of the net static pressure rise. Since the blowing parameter is

evaluated to prevent separation to a static pressure rise value, this chordal

position is a separation location. This resulted in the second slot being lo-

cated too near the first slot for practical fabrication. That is, the second

slot would have intersected the first slot due to the suction surface curvature.
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As a result, the second slot location was moved rearward to 70% chord

to permit proper run-out (into the blade core) of the slot machining tool

while maintaining a reasonable value of slot tangency angle. The first slot

blowing parameter is, therefore, required to maintain attached flow to six

boundary layer thicknesses downstream of the 70% chordal position. This

was found to be approximately at 80% chord based on the 80% chord boundary

layer thickness without the second slot. Analysis showed that there was no

significant penalty on net blowing flow rate resulting from this choice of slot
location.

Slot sizing calculations for the double-slot configuration were also

based on slot location at constant percent chord along the whole blade span.

This introduced an additional complication for the double-slot configuration

since, as in the single-slot case, a constant slot width was selected for

fabrication simplicity. Therefore, the largest ,4¢and h along the blade span

must be selected. These values occurred at the tip section. The design

blowing parameter for the first slot is then given by:

Mdes =M hde----_s (28)
h

for the mean and hub sections. The design blowing parameter value is

required to calculate the boundary layer properties for the second slot de-

sign from Figure 40.

Resulting final values for slot locations, required local stream values,

boundary layer properties and blowing flow rates are summarized in Tables

VI through IX.

Since the blowing slot was selected to be a planar cut for mechanical

simplicity, the slot tangency angle was required to vary along the span due
to blade twist. Based on mechanical limitations to prevent the cutting tool

from intersecting the core side of the suction surface wall, a minimum slot

tangency angle of about 13 degrees can be obtained. These minimum angles,

shown in Table VI, are set at the hub as a result of the vane twist.

For blowing slots located in the 30 to60% chord area of these high

cambered vanes, the slot length-to-height in the suction surface wall thick-
ness was found to be less than 4.0. The resultant jet flow ejecting from

this type of slot is expected to be highly divergent and of poor directional

quality. To eliminate this effect, a protuberance, as shown in Figure 38, was
added on the core side of the blowing slot to ensure that a length-to-height

ratio of 4.0 would be maintained if the jet slot design height was increased

by 50%.
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MECHANICAL DESIGN AND STRESS ANALYSIS

Mechanical design of the test hardware for this project involved three
basic areas:

• Compressor blading

• End-wall boundary layer bleed system

• Required supporting structures and equipment

These areas will be discussed first in regard to rig construction details and

secondly in regard to stress and vibration analysis.

RIG DESIGN

The general layout of the test hardware is shown in Figure 41. Bearing

loads are carried to the external structure through radial struts of 410-type

stainless steel at inlet and exit. The inlet strut is aerodynamically shaped

and located sufficiently far away from the blading to provide negligible flow

disturbance into the inlet guide vanes. The exit strut is essentially radial

and made from circular rods. Hub wall support struts are located as far

downstream as mechanically possible and serve as hub wall bleed ducts.

Therefore, a minimum internal area was required to pass the flow. The

leading and trailing edge radii of the bleed strut are equal to half the strut

thickness. Thrust loads are carried by the rear ball bearing which was

sized for a thrust load of 1320 pounds and a radial load of 150 pounds with

life expectancy greater than 20, 000 hours at 100% speed. The forward

roller bearing has a life expectancy of one million hours at three hundred

pounds radial load and 110% speed. This bearing and its related carbon

face seals are production parts acquired from the Model 501-D13 commer-

cial engine program.

The rotor is composed of the basic wheel disk, to which the blades are

attached, with coned shafting on each side. This type of design gives ex-

cellent vibrational characteristics with low weight. The wheel disk and

rotor blades are of 410 material and the coned shafts are of a D-6 material

for greater strength. Blade attachment is by means of conventional dove-

tails with pins to restrict axial movement in the slots.

The hardware has been designed to permit rapid changes of all case

components including inlet guide vanes, stator vanes, and both inner and

outer wall bleed system bands. The front and rear supports are held in

relation to each other through an external tram rail support system. The

case assembly is split vertically and is supported from the tram rail system.

The cases may be removed for stator vane configuration changes with the

rig still mounted on the test stand without destroying rotor alignment.
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The inlet guide vanes, also of 410 material, have been segmentized to

permit vane changes without removing the cases. The 34 vanes are divided

into six segments of three vanes each and four segments of four vanes each.

Each segment may be removed from outside the case. The vanes are in-

dividually adjustable within each segment.

The stator vane mechanical design provides end-wall boundary layer

bleed in the vicinity of the stators and permits manual resetting of the stator

blade angle. This is accomplished by attaching a coaxial circular section of

the bleed wall skin to the stator vane assembly. This circular disk is re-

cessed into the remainder of the bleed wall at assembly, forming an es-

sentially complete circumferential strip of porous wall at both hub and tip

of the vanes. Bleed air passes through the porous wall into circumferential

cavities. External hose fittings connected to the tip cavity are provided be-

tween each two successive stator vanes. Equal length hoses connect these

fittings to a test stand vacuum header. The hub bleed air is ducted from

the collection cavity to the hub wall struts and out through these hollow struts

to another vacuum header.

Each of the bleed walls was required to pass 2.5% of the compressor

inlet flow within a pressure drop of 5 psi and still provide test facility margin

on vacuum capacity. A variety of commercial porous materials were in-

vestigated for this application, but none met the design requirements.

Therefore, it was necessary to fabricate special material. A thin (0. 010-

inch) sheet of perforated metal with holes of 0. 0135-inch diameter was chosen

_ size could be photo-etched into the metalfor the bleed walls. T-_s hole

conveniently, and enough holes were included so that essentially uniform

mass removal effects on the boundary layer were produced. Final hole

spacing of 0. 062 inch on centers was determined by flow testing.

The stator vanes are cast from Inco 713 material. Castings were chosen

because of the hollow vanes and the number of pieces required. The Inco

713 material was chosen because of known characteristics with ceramic cores

and dimensional stability for this type of casting. The oversize hollow tip
trunnion on the stator vanes is the result of using the same equipment for

another NASA project reported in Reference 1 requiring airfoil surface

boundary layer bleed.

An abradable coating on the compressor cases over the rotor blade tips

permits low running clearances between blade tips and case. The rotor is

designed with an interference fit such that the rotor blade tip will run into

the abradable coating at design speed. Radial growth due to centrifugal force

and temperature expansion are considered. Nominal design clearance for
this rotor is -0. 0025 inch at 100% speed and -0. 0045 inch at 110% speed.

Nominal static clearance is 0. 0075 inch.
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STRESS AND VIBRATION ANALYSIS

As a part of the mechanical design of the test rig, stress and vibration
analyses were conducted for the critical components. These analyses in-
cluded the rotor system, stator vanes, and bearing supports with related
structural components.

Rotor System

The rotor blades were analyzed to determine stresses due to centrifugal

and gas bending loads. A computer program that calculates blade element

air loads and section properties at multiple radial locations was used in the

analysis. Air loads were integrated spanwise and actual airfoil section

properties were used to mathematically reproduce the relationship between

fluid forces and blade geometry. Gas bending stresses were calculated at

the leading and trailing edges and at the crown of the blade. The results of

this analysis given in Figure 42 show that steady state blade element stresses

are well within the design limits for the 410 stainless material which has a

yield strength of 102,000 psi.

Additional blade calculations were made to determine first and second

bending and first torsional vibration frequencies. The overall range of first

bending, shown in Figure 43, is 405 to 525 cps between zero and 110% design

speed. First torsion frequency is practically constant and is 1135 cps at the

110% speed point. Second mode bending frequencies varied from 1620 to 1750

cps. Lines representing engine orders are shown to permit identification of

any excitation frequencies within the operating range such as inlet guide vane

wakes or upstream bearing support struts. All calculated bending frequen-

cies are above the third engine order line and are adequate in view of all

projected disturbances within the rig design.

The blade attachment is a single-serration dovetail. Stresses calculated

in the dovetail are listed in Table X.

The rotor wheel with attached conical drive shaft was sized to reflect

conservative wheel stresses and to limit rim radial growth to values accep-

table to blade tip aerodynamic performance characteristics. Final stresses

and rim growth are shown in Figure 44. The wheel and conical drive shaft

were analyzed together as an integral system with the interaction of forces

and moments considered. The free-state radial growth of the conical shaft-

ing was greater than the equivalent radial attachment point on the wheel with

the result that the shafting was piloted to the wheel. This design feature was
utilized to ensure that the bolt attachment was not loaded in shear. Restrain-

ing the shafting by the wheel pilot developed the shafting stresses shown in

Figure 45. These calculated stresses are also well within allowable stress

limits of the material which has a yield strength of 200, 000 psi at the tem-

perature to which it is subjected in this application.
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Stator Blades

The blowing type vane geometries represent airfoil sections which are

slotted radially at multiple locations and, in many cases, reflect unsup-

ported airfoil strips. The first requirement for overall vane stress assess-
ment was to assume the vanes to be hollow but with a continuous wall and

calculate the bending stress and natural frequency for pinned hub attach-

ments. The calculated frequencies are well above known excitation engine

orders and the bending stresses are quite low. Calculations for both the

0.65 and 0.75 diffusion factor blading are presented in Figures 46 through

49.

The second requirement was to examine the stresses and vibration fre-

quency of the strips formed by the single continuous slot, considering the end

and side fixities as applicable. The results of this investigation prompted

a deflection analysis to determine the change in slot gap dimensions under

operational conditions (Table XI).

This analysis indicates that basically the bending stresses and natural

frequency of these airfoil strips lie in an area of little concern. The per-

cent change in the static gap dimensions, shown in Table XI, was in most

instances considered excessive with respect to aerodynamic characteristics

for all slotted airfoils. The decision was made that all airfoil slots were to

have two intermediate ties. This shortening of the strips reduced the de-

flection directly by the third power of the length change and increased the

frequency by the second power. All configurations were determined to be

structurally sound.

Bearing Supports

The radial spring rates of the front and rear bearing supports were

calculated using a computerized solution of spoked, stiffened concentric

cylinders. The results of this calculation provided a spring rate of 1.3

× 106 pounds/inch at the front and 3.4 × 106 pounds/inch at the rear support.

Using these elastic bearing support rates, the system critical speed is

17,800 rpm or 114% above design speed. Figure 50 presents the rig system

critical speed in terms of a fixed spring rate of the rear support versus

variable front support rates. In addition, the external rig mounting system

was investigated to determine the elastic support content and was found

to be almost completely rigid.

Allison design practice specifies that calculated system critical speed
must be in excess of 140% design speed. This requirement has been satis-

fied.
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COMPRESSOR FLOW ANALYSIS

The stage velocity diagrams were calculated taking into account radial

gradients of entropy and radial velocity. The analysis was made on a be-

tween blade row basis. Thus, the streamlines were assumed to form a

smooth curve joining the streamline points calculated in the between row

planes. Three axial stations upstream and three stations downstream of

the compressor are also included in the calculation to help define the
streamlines.

Assuming axisymmetric flow between blade rows,

equilibrium is:

the equation of radial

i _Tt _}S _}V0 V0 2 _}Vz _V r

JgCp_-_ = Jgt-_-_ +V8 -_- + _, +V z----_- V z---7

The entropy gradient term, --, is modified by using the following re-
aR

lationship. The entropy difference for a perfect gas between two conditions
is:

2 dT t _ Pt 2S 2 - S 1 = Cp in--or for constant Cp
T t J1 Ptl

Tt2 7_ Pt2 _ T Tt2 _:_ Pt2

S 2 - S 1 = Cp in in - in in--
Ttl J Ptl J (T-l) Ttl J Ptl

I

B
i

I
I

or, in this case, when integrating from a reference station R i to R:

7

-S ;¢2 _ in {Tt/Tti) _-1

_R J _R | Pt/Pti

The radial velocity term, V z _----_,is difficult to evaluate in this form be-

cause the partial differential of V r with respect to z is by definition at con-
stant radius while the rest of our calculations are on a streamline basis.

For that reason, the curvature term is modified in the following manner:
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but: Vr = Vz_(-_-z)sl

so:k-g;_jRv_k%-j_2]sl _R
Z

Therefore, the radial velocity gradient or curvature term is:

/v_._-_V/_ Vz2 +Vz

-V z

To find the radial variation of axial velocity between blade rows, the

radial equilibrium equation with the new terms for entropy gradient and

curvature is integrated from R i to the next radius, which provides the fol-
lowing equation:

R_il% V0 2Vz2 _ Vz i2 = 2gJCp (T t - Tti) - (V 02 . V_i 2) - 2 . --dRR

+ V z

_o_f_ t_,,_,_
R i

_ f_v_./ )sl -vz

+2

_R

sl

z sl
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where subscript i refers to conditions at a reference station or radius.

The conditions to solve this equation are given to the computer in the

following way. Case and hub geometry for all axial stations are specified,
including three stations before the first rotor or IGV inlet and three sta-

tions after the last stator exit. These six extra axial stations are to better

define the flow path at the compressor inlet and exit. The geometry is

given as blockage factor, hub radius, and tip radius versus compressor

axial length. The increment of flow in each streamtube is specified to allow

the computer to obtain intermediate radii. Mass flow, rpm, _ (ratio of

specific heats}, _ (gas constant} and Cp (specific heat at constant pressure}

are also specified. The following items are prescribed in polynomial form
as function of radius:

• Total temperature--for first four axial stations (including IGV inlet}

• Total pressure--same as total temperature

• A total temperature--across each rotor versus radius at rotor exit

• Rotor adiabatic efficiency--at each rotor exit

• Stage adiabatic efficiency--at each stator exit

• Tangential velocity--inlet to each rotor and at the last stator exit

Assuming the radial velocity is zero at the inlet of the first axial station

(three ahead of rotor or IGV inlet}, the program can proceed through the

machine solving radial equilibrium using an iterative method. After each

pass through the radial equilibrium equation, continuity is checked by the

following equation:

i

_'-i

/"
Wa = 2rr .j (pVzR)dRwhere P --._- -

R H

If the velocity distribution obtained by the radial equilibrium equation

does not satisfy continuity, the radial distribution is kept the same, but the

level is changed to satisfy continuity. Another pass is then made through

the radial equilibrium equation using the new value for the reference velocity.

This process is continued until both the continuity and radial equilibrium

equations are satisfied.
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Table X.

Rotor blade dovetail serration stresses.

I
I

!

I

Item

Projection shear

Contact bearing

Tensile

Projection bending

Calculated

stress

(psi)

13,800

16, I00

8,400

29,700

Allowable

stress

(psi)

66,000

242,000

121,000

121,000

Safety
factor

4.78

15.0

14.5

4.05

I
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I
I
I

I
i

I
I
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Figure 1. Midstage stator hub and rotor tip loadings for (RIt/RT) 2 = 0.7.
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Figure 2. Preliminary design study--stator hub Mach

number and turning angle.
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Figure 7. Velocity diagrams for flow generation rotor.
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Figure 8. Velocity diagrams for 0.75 hub Df stator.
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Figure 9. Velocity diagrams for 0.65 hub Df stator.
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Figure 10. Inlet guide vane total pressure loss coefficient distribution.
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Figure 16. Air turning angle as a function of equivalent circular arc
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Figure 19. Stalling incidence and onset of leading edge velocity

peak for _2 = 45° and ¢ = 1.0.
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Figure 22. Crossplot for stator incidence and camber selection.
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Figure 24. Operating range of 0.65 hub Df stator at
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0.75 hub Df stator operating range at design

inlet Mach numbers.
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Figure 26. Margin between stator design inlet angle and stator inlet

angle at rotor stall--design inlet guide vanes.
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Figure 27. Margin between stator design inlet angle and stator inlet

angle at rotor choke point - design inlet guide vanes.
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Figure 29. Margin between stator design inlet angle and stator inlet angle at
rotor choke point--off-design inlet guide vanes.
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inlet angle at rotor stall--off-design inlet guide vanes.

76

I
I

I
I

I
I

I
I

i

I
I

I

I
I

I
I
I

I

I



D - ......... :_

i 65 series

a = 1 meanline _

/_2 = 60°

or = 1.5

60% chord
Suction surface

0 ..... ,,,i |,,,,,,,,,,, o

0.4 0.8 1.2

Note" Numbers by data points indicate

angles of attack

• l ! . | 11 . li

1.6 2.0 2.4 2.8

Lift coefficient, C
L o

5636-32

Figure 31. Typical cascade airfoil pressure coefficient variation.
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Figure 33. 0.65 hub Df stator pressure distribution.
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Figure 46. 0.65 hub I)f vane bending stress (unslotted and pinned).
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Figure 48. 0.75 hub Df vane bending stress (unslotted and pinned).
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Figure 49. 0.75 hub Df vane frequency (unslotted and pinned).

95



100

I

I

X

cD
¢D

¢9

2
O

1

I I ! I I i

support spring rate = 3.4 x 106 lbf/in.Rear

I ' ' ' I I
I
I
f

_._....._....._..f_._.----_-- ----- 3rd model
i 2nd mode

-- !

Design value
I
I
l , ,.

!
I
I

L -i----=-lst mode
.-.4""

_ ,
f ,

2 5 i0 i00

Front support spring rate x 10-5--1bf/in.

1500

5636-51

Figure 50. Test rig critical speeds.
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